Mixed Decision Trees: An Evolutionary Approach
نویسندگان
چکیده
In the paper, a new evolutionary algorithm (EA) for mixed tree learning is proposed. In non-terminal nodes of a mixed decision tree different types of tests can be placed, ranging from a typical univariate inequality test up to a multivariate test based on a splitting hyperplane. In contrast to classical top-down methods, our system searches for an optimal tree in a global manner, i.e. it learns a tree structure and tests in one run of the EA. Specialized genetic operators allow for generating new sub-trees, pruning existing ones as well as changing the node type and the tests. The proposed approach was experimentally verified on both artificial and real-life data and preliminary results are promising.
منابع مشابه
Evolutionary Induction of Mixed Decision Trees1
This article presents a new evolutionary algorithm (EA) for induction of mixed decision trees. In nonterminal nodes of a mixed tree, different types of tests can be placed, ranging from a typical inequality test up to an oblique test based on a splitting hyper-plane. In contrast to classical top-down methods, the proposed system searches for an optimal tree in a global manner, that is it learns...
متن کاملGlobal Induction of Decision Trees: From Parallel Implementation to Distributed Evolution
In most of data mining systems decision trees are induced in a top-down manner. This greedy method is fast but can fail for certain classification problems. As an alternative a global approach based on evolutionary algorithms (EAs) can be applied. We developed Global Decision Tree (GDT) system, which learns a tree structure and tests in one run of the EA. Specialized genetic operators are used,...
متن کاملMixed Decision Trees: Minimizing Knowledge Representation Bias in LCS
Learning classifier systems tend to inherit—a priori—a given knowledge representation language for expressing the concepts to learn. Hence, even before getting started, this choice biases what can be learned, becoming critical for some real-world applications like data mining. However, such bias may be minimized by hybridizing different knowledge representations via evolutionary mixing. This pa...
متن کاملEvolutionary induced decision trees for dangerous software modules prediction
We study the possibility of constructing decision trees with evolutionary algorithms in order to increase their predictive accuracy. We present a self-adapting evolutionary algorithm for the induction of decision trees and describe the principle of decision making based on multiple evolutionary induced decision trees – decision forest. The developed model is used as a fault predictive approach ...
متن کاملAn Evolutionary Algorithm Based on a Hybrid Multi-Attribute Decision Making Method for the Multi-Mode Multi-Skilled Resource-constrained Project Scheduling Problem
This paper addresses the multi-mode multi-skilled resource-constrained project scheduling problem. Activities of real world projects often require more than one skill to be accomplished. Besides, in many real-world situations, the resources are multi-skilled workforces. In presence of multi-skilled resources, it is required to determine the combination of workforces assigned to each activity. H...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2006